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SUMMARY 

The finite element method and the Newton-Raphson solution algorithm are combined to solve the momentum, 
mass and energy conservation equations for coupled flow problems. Design sensitivities for a generalised response 
function with respect to design parameters which describe shape, material property and load data are evaluated via 
the direct differentiation method. The efficiently computed sensitivities are verified by comparison with 
computationally intensive, finite difference sensitivity approximations. The design sensitivities are then used in a 
numerical optimization algorithm to minimize the pressure drop in flow through contractions. Both laminar and 
turbulent flows are considered. In the turbulent flow problems the time-averaged momentum and mass 
conservation equations are solved using a mixing length turbulence model. 
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1. INTRODUCTION 

The engineering design process is a vital component of industry, and recent efforts to improve 
competitiveness have brought design to the fore. Owing to the high cost of building prototypes, 
analysis is often used to evaluate and improve designs in the preliminary stages. In this paper we 
describe practical and efficient techniques for combining thermal and fluid flow analysis codes with 
numerical optimization to facilitate this preliminary design process. Because the individual process 
analyses are typically expensive to perform, we use optimization algorithms which require relatively 
few analyses. These algorithms use the design sensitivities of cost and constraint functions, and as 
such, much of this paper is devoted to the derivation of efficient means for computing these 
sensitivities. We then present some example problems for coupled thermal and fluid flow problems to 
illustrate the use of these techniques. 
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It is always possible to use zero-order optimization algorithms, i.e. algorithms which do not require 
sensitivities. Several authors have used this technique in aerodynamic design.I4 This approach is 
advantageous as it is easily implemented and does not require access to the analysis source code. 
However, we do not consider these algorithms to be a viable approach to design if the number of 
design parameters is large or the analyses are computationally intensive. Further, zero-order methods 
cannot guarantee that a design is optimal, as the Kuhn-Tucker optimality conditions cannot be verified. 

Sensitivity analyses have been presented for numerous thermal problems. Haftka5 and Meric6-* 
described sensitivity analysis for linear thermal systems, while Tortorelli and c o - w ~ r k e r s ~ ~ ’ ~  and 
Dems’ ‘,I2 described an adjoint method for non-linear thermal systems. Direct differentiation 
approaches for transient, non-linear thermal systems are also presented in References 11-1 3. 
Relatively recently, sensitivity analyses have been presented for fluid flow systems. Many of these 
applications focus on aerodynamics, where the Euler equations are solved using finite difference or 
finite volume methods.I4-I6 Others have considered the Navier-Stokes equations for low-Reynolds- 
number flows using both finite volume and finite element analysis method~.”-*~ We are not aware of 
any sensitivity analyses for higher-Reynolds-number turbulent flows. 

The existence and interpretation of the sensitivities is an issue itself. Here we assume that the 
fluid/thermal system is differentiable with respect to the design. However, this is not always the case. 
In a plane flow, Fearn et aL2’ found that for an abrupt symmetric channel expansion and initially steady 
symmetric flow becomes asymmetrric and has multiple steady solutions as the Reynolds number 
increases. In such cases, sensitivity analysis cannot be performed, as the response is not differentiable 
with respect to the design. In addition, in turbulent and more general chaotic flows the response 
sensitivities are extreme. Indeed, the sensitivities with respect to the initial conditions can be used to 
identify chaotic responses. The use of these extreme sensitivities in a Taylor series expansion or an 
optimization algorithm would appear to be fruitless. However, if temporal or spatial statistical response 
measures are used (which are not extremely sensitive to the initial conditions), then we expect that their 
sensitivities will be meaningful. 

In the following sections we present a systematic approach for computing explicit design sensitivity 
for transient laminar flows, coupled with the solution of the energy equation. Sensitivities for a general 
hctional are evaluted with respect to shape, material response and load data parameters. These 
methods are then extended to consider turbulent flows, using a mixing length model for the eddy 
viscosity in the time-averaged form of the Navier-Stokes equations. 

The mixing length model has been largely supplanted by the k--E model of Launder and 
S ~ a l d i n g ~ ~ , ’ ~  in many applications. However, shape sensitivity analysis for this model proved to be 
extremely difficult owing to its use of special wall elements and specialized shape functions to 
represent turbulent boundary layers. The mixing length model is computationally simpler than the k--E 
models and is adequate for simple geometries and non-recirculating 

After deriving expressions for the efficient computation of design sensitivities for these flows, we 
consider the design of an axisymmetric contraction. The pipe profile in the transition region is 
designed to minimize the pressure loss through the contraction. As one might expect, laminar and 
turbulent flows require considerably different profiles to achieve this goal. 

2. BASIC FORMULATIONS 

This section outlines the basic equations used to derive shape sensitivities, the means to solve non- 
linear problems and a general approach to evaluate design sensitivities for both steady state and 
transient coupled flow systems. 
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2.1. Domain parametrization overview 

The domain parametrization method is incorporated to evaluate shape sensitivities. In this method 
(see Reference 25 for further details) all fields are transformed fiom the current configuration b with 
boundary ab and outward normal n to a fixed reference configuration B with boundary aB and outward 
normal N. The transformation is accomplished through the map x: 

where x is the position of a material point in the current configuration (here the spatial configuration), 
X is the position of the matrial point in the reference configuration and @ is the design parameter 
vector. In the finite element method the map x is expressed piecewise over the domain through JI‘, the 
element shape function associated with the I th node, x’, the I th element node co-ordinate vector, and 
N,, the number of nodes which comprise the element. Note that x’ is a function of the design 
parameters. The Jacobian is defined in the usual fashion as 

J(X, @) = Vxx(X, @). (2 )  

The Jacobian determinant J(X, @) = det(J(X, a)) is used to relate differential volumes between the 
two configurations in the usual manner, whereas differential areas da, on aB and da, on 
ab = x(aB, @) are related through the surface area metric K as 

K(X, @) = da,/da, = J(X, @) II J-T(X, @)N(X) I(. (3 1 
All functions T defined on the current configuration b are transformed to referential functions ? 

defined on the reference configuration B through the composition 

?(X, @) = T(X(X, @), @). (4) 

Note that while functions ? and T differ (indeed, they are defined on different domains), their values 
agree at the corresponding pairs (X, @) and (x(X, a), a). 

2.2. Newton-Raphson method 

The Newton-Raphson method is an effective means to solve non-linear problems (see Reference 26 
for more details). Additionally, the tangent operator used in the Newton-Raphson iteration is also used 
in the sensitivity analysis. 

We express the non-linear problem (here the coupled flow problem) in residual form as 

R(U(@), @) = 0, ( 5 )  

where R is the discretized residual and U is the discretized system response. In the Newton-Raphson 
analysis, equation ( 5 )  is solved iteratively for U for a fixed design @. The current iterate U’ is updated 
to U’+’(@) = U’(@) + dU, where the incremental response dU is the solution to the linearized 
problem 

(U’(@), @))dU = -R(U’(@), a), (6 )  au 
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in which aR/8U is the tangent operator. This process is repeated until convergence is attained and is 
generally regarded as highly effective since it exhibits quadratic terminal c~nvergence.~’ 

2.3. Direct diferentiation sensitivity analysis 

Three techniques have been used in the literature to evaluate sensitivities: the finite difference, direct 
differentiation and adjoint methods. Although the finite difference method is the easiest to implement, 
it is computationally inefficient and may suffer from round-off or truncation errors.’* On the other 
hand, the direct differentiation and adjoint methods are both computationally efficient and accurate. 
The choice between the direct and adjoint methods generally depends on the ratio of the number of 
design parameters to the number of response functions. If the number of response functions exceeds 
the number of design parameters, the direct differentiation method is preferred; otherwise the adjoint 
method is preferred.28 In addition, transient systems may favour the direct differentiation method 
owing to the backward time mappings which are required in the adjoint m e t h ~ d . ’ ~  Here the direct 
differentiation method is selected for the sensitivity analyses so that transients may be easily 
incorporated. 

In the following (see Reference 26 for more details) we consider a generalized response function 
written as 

G(U(Q,), Q,), (7) 

where Q, is the design parameter vector. For the coupled flow problem the response U consists of the 
velocity, temperature, pressure, stress, velocity gradient, internal energy, heat flux and temperature 
gradient fields, while the design parameters in CP may be used to describe the shape, material response 
and load data. 

The design sensitivity is computed from 

DG 8GDU aG 
D Q , - % 6 6  a@ +-. -- 

In the above, 8G/aU and a G / m  are explicitly known quantities since G is defined by the engineer, 
whereas DUIDQ, is implicit because U is implicitly defined on the design through the system equation 
(see equation (5)) .  

In the direct differentiation sensitivity analysis the response derivative DUIDQ, is evaluated, 
whereupon the sensitivity may be evaluated from equation (8). Differentiation of equation (5) with 
respect to each of the N design parameters and some rearrangement yields 

aR 
- 

8R DU 
a u D a j  mi‘ (9) 

The response sensitivities DU/D@,, are evaluated by solving the above pseudoproblems which are 
linear in DU/D@,. Here aR/aU is the same tangent operator which is used in the Newton-Raphson 
method (see equation (6) )  and the -aR/L3Di define the so-called pseudoloads. Once all the response 
sensitivities DU/D@., are determined, the sensitivities for any number of response functions may be 
evaluated from equation (8). 

As previously mentioned, the tangent operator required for the Newton-Raphson method is also 
required to compute the sensitivities (see equations (6) and (9)). Therefore in the finite element method 
the decomposed tangent stiffness matrix resulting from the iterative solution of U may again be used to 
solve equation (9) for each of the DU/D@,. Hence, whereas the iterative solution of the primal anlaysis 
for U requires many matrix assemblies, decompositions and back substitutions, the evaluations of the 
DU/D(D, require only the formation of N pseudoload vectors (-8R/LN)j) followed by N back 
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substitutions.* Thus the direct differentiation method is cost-efficient. Furthermore, since no 
approximation to the derivative is used, the direct differentiation method is not degraded by the 
truncation or round-off errors that afflict the finite difference method. 

2.4. Discrete transient sensitivity anlaysis 

For transient problems the system is described by the response U (a function of time) and its time 
derivatives. To solve a transient problem numerically, we discretize the time domain into a finite 
number of intervals and obtain the time derivatives by finite difference approximations. 

The 
response time derivative is approximated by the backward difference? 

Fully implicit (backward Euler) time integration is incorporated here owing to its 

where for a typical time step n the quantities "-' U and "U refer to the responses at the beginning and 
end of the time step respectively, i.e. at times "-It and " t .  Consequently, the discretized residual "R is a 
function of the unknown response "U (to be evaluated during the time "t analysis), the known response 
"-' U (since it is computed at the previous time step "-It analysis) and the known design CD (since it is 
fixed during the analysis), i.e. 

"R("U(@),"-'U(@), @) = 0. (11) 

To solve equation (1 1) for "U, we again use the Newton-Raphson method. The iterations are repeated 
for the time "t analysis until the solution converges, at which point the time is advanced. 

For the discretized transient problem (see Reference 26 for more details) the response function is 
written in terms of the solution at the discrete times ot,'t,2t, . . . , M t  as 

G(MU(@),M-'U(@), . . . ,'U(@),'U(@), a), (12) 

where '"'f = t f  is the terminal analysis time and ' t  = 0 is the initial analysis time. The response at 
intermediate times may be incorporated by interpolation in the time domain. The sensitivity of G is 
obtained by differentiating equation (1 2): 

where the response sensitivities D("U)/DCDi are all implicit quantities which must be resolved. 

Equation (1 1) is differentiated with respect to Qi, which after some rearranging yields 
To evaluate the response sensitivity D("U)/DCDi, we may apply the direct differentiation method. 

* In the Newton-Raphson iteration the tangent operator is evaluated at the previous solution iterate U'-'. However, in the 
pseudoproblem the derivative DU/DQi is evaluated at the converged solution U'. Therefore, if U'-' and U' are significantly 
different, then aR/aU should be re-evaluated and decomposed once before proceeding with the N pseudoanalyses. 
t The notation "f = f ( " r )  is used henceforth. 
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The response sensitivity D("U)/DOi is evaluated by solving the above pseudoproblems, where again 
a("R)/a("U) is the tangent operator which is formed during the primal anlaysis at time "t and 

is the pseudoload. It is presumed in equation (14) that D("-'U)/DOi is a known quantity. This poses 
no problem, for at the initial analysis, i.e. n = 1, D('U)/DOi is known since it is the design derivative 
of the initial condition. Then D('(U)/DO, is obtained from equation (14) for n = 1. This procedure is 
repeated at each time step until D("-'U)/DQi is determined. Consequently, the evaluations of the 
primal response "U and response sensitivities D('U)/DQi are performed simultaneously. 

The finite element procedure to compute the direct differentiation sensitivities proceeds as follows. 
At each time step "t  the resonse "U is first evaluated via a Newton-Raphson iteration. Then the N 
pseudoload vectors of equation (14) are formed and back substituted into the existing decomposed 
tangent stiffness matrix to evaluate the response sensitivities D("U)/D(Di. Finally, the sensitivity is 
computed from equation (1 3). The statements regarding the accuracy and efficiency of the steady state 
sensitivity also apply here. 

3. COUPLED FLOW PROBLEMS 

3.1. Governing equations 

The mass, momentum and energy conservation equations are expressed in terms of the velocity, 
temperature and pressure fields in what is sometimes called the 'mixed method'. The corresponding 
equations which use the penalty method to eliminate the pressure field are provided in Appendix I. 
Using a Eulerian kinematic description and a constant density fluid, the coupled flow problem is3' 

p - + (V,u)u = div,.r + pb (: ) inb  x I x gN, 

p ( y  + u * V,e(T) = -div,q +I - V,u + p Q ( T )  ) in b x I x 94", 
div,(u) = 0 in b x I x RN, 

where all field quantities are functions of (x, t ,  a) E b x I x gN, i.e. the spatial location x E b, the 
time t E I = [0, $-I and the design Q, E BN.  The internal energy per unit mass, e, and heat source Q 
may be temperature-dependent. In the momentum equation, b is the body force per unit mass, which 
may represent gravity, Lorenz forces or a D'Alembert body force. Also in the above equations, u, T, p 
and q are the velocity vector, Cauchy stress tensor, density and heat flux vector fields respectively. 

In addition, we first consider the following constitutive laws to be enforced: a Newtonian fluid 
relation and a non-linear Fourier conductivity relation 

~ ( p ,  D, 7') = -PI + 2p(T)D 

q(T, g) = -k(T)g(T) 

in b x I x WN, 
in b x I x WN, 

where p is the temperature-dependent viscosity, k is the temperature-dependent thermal conductivity 
tensor, p is the pressure, D = 1 [V,u + ( V , U ) ~ ]  is the rate-of-deformation tensor and g = V,T is the 
temperature gradient vector. 
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Finally, the boundary conditions 

u = up on a,  x I x B ~ ,  
t = tp on a, x I x g N ,  

T = T p  on aT x I x WN, 
qs = qP(T) on aq x I x B~ 

and the initial conditions 

u/,,o = uo in b x WN, 
~ l ~ , ~  = To in b x gN 

are enforced. In the above, t = Tn is the stress vector and qs = q - n is the outward surface heat flux. In 
the natural boundary condition on uq, qp is expressed in a general form so that it can be used to model 
prescribed flux, convective and radiation boundary conditions. 

The primary response consists of the spatial velocity vector u, temperature T and pressure p .  The 
other (derived) spatial response fields consist of the Cauchy stress T, rate-of-deformation tensor D, 
stress vector t, heat flux vector q, temperature gradient g and surface heat flux qs. Explicitly defined 
field quantities (which can be parametrized by the design parameters a) consist of the prescribed 
velocity vector up, prescribed surface traction vector tp, prescribed temperature TP, initial velocity 
vector uo and initial temperature 2'"'. Finally, the following fields exhibit explicit dependence on the 
design and possibly implicit dependence on the response owing to temperature dependence: the body 
force vector b, viscosity p, heat source Q, internal energy per unit mass, e, thermal conductivity tensor 
k and heat flux qp. 

Following the usual isoparametric finite element formulation and the implicit time integration 
scheme described above, we define the variational statement corresponding to the coupled flow 
problem on the reference configuration B at time "t  as 

+ [- 71 - D(ii, J )  + D(ii, J )  * 2$D(%, J)ydvx J, 

?{D(%, J) * [- 71 + 2bD("6, J)]}JdvX 

g(p,  J )  kg("?, J)Jdv, + jAq FGPKdax 

= 0, (19) 

where (̂ ) denotes a referential field quantity (see equation (4)). The referential kinematically 
admissible weighting functions ii and f' have spatial derivatives which are square integrable and satisfy 
ii = 0 and ? = 0 on the surface A,, and AT respectively. The fieldp is kinematically admissible if it is 
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square integrable.32 Likewise, G and ? are kinematically admissssible if their spatial derivatives are 
square integrable and they satisfy the essential boundary conditions on the surfaces A,, and A ,  
respectively, and j is kinematically admissible if it is square integrable. 

In equation (1 9) the referential rate-of-deformation tensor D and referential temperature gradient 
vector g are defined via 

D ( G ,  J) = &[VxiJ-' + J-T(VxG)T], 

g(?, J) = J-TV,?, 

and similarly for D(ii, J) and g(?, J). 
To show that equation (1 9) is of the form of equation (1 l), we define 

"up) = ("G(@)," ? ( @ ) , n i p ) ) .  

The tangent operator may then be evaluated in partitioned form from 

where the detailed derivative expressions appear in Appendix 11. 

3.2. Sensitivity analysis for the mixed method 

time and transformation to the reference configuration) as 
For the coupled flow problem the generalized response function is expressed (after discretization in 

where for conciseness the spatial dependence has been omitted and only the response at time Mt = t ,  is 
incorporated in G. However, this latter simplification does not present a limitation to the method, as the 
response at any or all time steps may be readily incorporated. Furthermore, G may include time 
integration to evaluate e.g. average values over time a interval. 

To simplify the ensuing sensitivity analysis, we partition the design vector as the set product of 
shape, as, material property, am, and load data, a,,, parameter vectors, i.e. 

@ = (as? (23) 

Expressions for the derivatives aG/m and aG/@%J) which are required to evaluate the sensitivities 
(see equation (1 3)) are provided in Appendix 11. 

To obtain the response design derivatives 
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we combine equations (14), (21) and (23) to give 

where we recall that 

is the tangent operator. (See Appendix I1 for detailed expressions.) 

4. TURBULENT FLOW 

To simplify this aspect of the analysis, we consider only isothermal turbulent flows described by the 
momentum and mass conservation equations. 

For statistically stationary turbulent flow the pressure, velocity and body force can be expressed as 
the sum of a mean and a fluctuating part.33 Following the usual procedure, the time-averaged forms of 
the momentum and mass conservation equations are written as 

p[(V,ii)ii] = - V q  + divX[2(p + pJD(ii)] + pb in b x @, 
div,(ii) = 0 in b x g N ,  (25) 

where pt is the eddy viscosity24 and ji = ji + f KE is redefined to include the eddy viscosity energy 
term (here KE denotes the kinetic energy). For clarity the overtildes 0, which indicate the time- 
averages for u , p  and b, are omitted henceforth. 

All that remains is to estimate pt. This is an active field of research. Most applications now use the 
k--E However, for very simple geometries a simpler model using a predetermined 'mixing 
length' can be employed with reasonable accuracy. In the mixing length model, pt is taken as34 

Pt(lm. D) = P&[~D(U).D(U)]''*+ 

where 1, is defined by Nikuradse's formula34 for circular cross-sections as 

- = 0 * 1 4 - 0 . 0 8  
r 

1m 

where r is the local radius in the tube and y is the distance from the wall. 
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Equation (25) is similar to the first and third equations of (15). However, in equation (25) the 
material properties are temperature-independent and the time-averaged flow quantities are used. 
Further, in equation (25) the turbulent viscosity pt is a function of the time-averaged rate-of- 
deformation tensor. 

Following the same procedure as described in Section 3, we use the finite element and Newton- 
Raphson methods to solve equation (25) subject to the boundary conditions of equation (1 7) applied to 
the mean flow. The residual is defined in the reference configuration B as 

R(U,j)  = f B  U * $(VXiiJ-’i - b)Jdvx + [-$I * D(U, J )  + D(U, J) - 2[(p + fit(;,,,, D))D(k J)]Jdvx 

+ $1 - D(i, J)Jdvx - IA, U @Kdax 

= 0, 
s, 

where the (*) quantities are as defined in Section 3 and 

$,(i,,,, D) = pii[2D(i, J) * D(G, J)]”2. (29) 

the tangent operator may be evaluated in partitioned form from 

where the details appear in Appendix 11. 

4. I. Sensitivity analysis for the mixing length model 

function is expressed in the reference configuration as 
The sensitivity analysis follows from Section 3.2. For the turbulent flow problem the response 

The design vector is still partitioned as shown in equation (23). The derivatives aG/m,,  
a G / m m ,  aG/Wld, aG/aii and aG/a$ are obtained directly from equations (45H48) and (50) 
respectively by eliminating all the temperature terms. The relations in equation (51) are also valid upon 
elimination of the temperature terms. 

The response design derivatives 

are derived in a manner analogous to equation (24), while the residual sensitivities 

(see equation (24)) are given in Appendix 11. 
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5. EXAMPLE: LAMINAR FLOW IN AN AXISYMMETRIC CONTRACTION 

In this example the finite element method, sensitivity analysis and numerical programming are 
combined to minimize the pressure drop in a steady, isothermal, laminar flow through an axisymmetric 
contraction, The density and viscosity are assumed constant and the body force b is independent of 
temperature T, so that the momentum and mass conservation equations may be analysed prior to the 
energy conservation equation. In fact, only the momentum and mass conservation equations are solved 
for the optimization. However, all equations are included in the sensitivity verification. 

5.1. Analysis 

The axisymmetric contraction studied appears in Figure 1. Dimensionless variables are used so that 
the scaled values of the inlet radius ri, outlet radius r,, contraction length L,, inlet length L, and outlet 
length L3 are chosen as ri/L, = 1.2, rJL, = 0.24, L2/L, = 4.0 and L,/L, = 2.4 and remain 
unchanged throughout the optimization. 

An axial velocity profile, which defines the flow rate, is prescribed on the inlet end (z = 0). The 
dimensionless boundary conditions are 

u Z = 1 - - 2 / ~  atz=O, 
u, = 0 at z = 0, 

u, = u, = 0 on A,,  
u, = 0 at r = 0, 
t! = 0 at r = 0, 
p = O  a t z = L ,  +L,+L,, 
u, = 0 at z = L, + L, + L 3 ,  

where A ,  is the contraction wall identified by the hash marking in Figure 1. Dimensionless variables 
defined by u* = u/u,,, x* = x/2ri and p* = p/puLax have been introduced, where u,, = u, at 
r = 0, z = 0 and the (*) has been dropped. The upstream condition on u, corresponds to fully 
developed flow in the inlet section. The Reynolds number is defined as Re = 2priu,/p, which we 
take to be 284. The effect of flow rate can be examined by varying the Reynolds number. 

The contraction inlet and outlet extensions are included to ensure that the incoming flow is 
independent of the contraction and the flow is fully developed at the pipe exit (z = L, + L2 + L J .  We 
also performed a finite element mesh convergence study for this example and found that a finite 
element mesh consisting of 2565 nodes and 2380 isoparametric quadrilateral elements with bilinear 

/ / /  
t 

'i r i  

3 1 

4 

Figure 1. Initial contraction design (not drawn to scale) 
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velocity and constant pressure interpolation is adequate. It is well known that this interpolation scheme 
may yield spurious pressure oscillations, which are most often observed in continuity-driven flows. No 
oscillations were found in our solutions.* 

5.2. Optimization 

The optimization seeks to minimize the pressure drop across the contraction by modifying the shape 
in the transition region (see Figure 1). The design parameter vector Q, = (@, , m2, . . . , QI2) is used to 
define the radial co-ordinates of the mesh control points (see Figure 2). A cubic spline passes through 
each adjacent pair of control points. The spline and mesh are created via the PATRAN programme36 
and we ensure that the slope is continuous between the adjacent spline segments.36 

In addition, zero-slope conditions are imposed on the geometry at the inlet and outlet ends of the 
transition region. Standard mapped meshing techniques are then used to interpolate the mesh node co- 
ordinates x’ from the spline using the same PATRAN preprocessor. To evaluate the node co-ordinate 
sensitivities &/a@, required for the shape sensitivity analysis, we use a PATRAN PCL pr~gramme.~’ 

The cost function of the optimization problem is the pressure drop across the contraction, which is 
expressed over the reference configuration as 

G = IA, $Max - @Krdax, 
/ A m  

(33) 

where A i  and A,,, are the cross-sections located at the inlet and outlet ends of the contraction 
respectively (see Figure 2) and the appropriate modifications for the axisymmetric description are 
applied to equation (22).38 The sensitivities of the response function are obtained by differentiation of 
equation (33): 

-Kr +@m)dax - 1 ( S K r  + p -  a(Kr))da,. mi 
aai Am 

(34) 

where it is noted that a ( K r ) p i  = 0 for this example since the radii of the inlet and outlet are fixed. 
In the following we discuss a preliminary sensitivity analysis and then the optimization results. The 

finite element analyses and direct differentiation shape sensitivities are computed with an enhanced 
version of FIDAP39 and the optimizations are performed with DO?’ using the Broydon-Fletcher- 
GoldfarbShanno (BFGS) alg~rithm.~’ 

I -4 I 7- 

Figure 2. Boundary conditions and design parameter distribution (not drawn to scale) 

* Supporting studies for the adequacy of the extensions, mesh and pressure interpolations appear in Reference 35. 
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5.2.1. Sensitivity results. Sensitivities play an important role in the optimization. Before 
commencing the optimization, a sensitivity analysis is performed on the initial design to illustrate 
the usefulness of the sensitivity analysis and to verify the accuracy of the direct differentiation 
sensitivity computations. 

The response sensitivities are calculated for the weakly coupled thermal-fluid problem. The thermal 
boundary conditions are defined as 

T = 2 9 8 K  a tz=O,  
qs = h(T - 293K) on A,, 

4' = 0 atz  = L ,  +L,  +L,, 
q' = 0 at r = 0, 

(35) 

where h =40 W m-* K-' and the boundary conditions of equation (32) still apply. 
The pressure drop sensitivities (see equation (34)) are plotted in Figure 3. Note that all the sensitivity 

values are negative. Therefore an increase in each design parameter value (i.e. increasing the radius) 
will reduce the pressure drop. Also note that the sensitivities are not monotonic. For example, 
Iap/%b91 > ~ p / ~ , o ~ .  One reason for this is that the amount of surface area affected by the design 
parameters is not equal. For example, a perturbation of (D9 displaces the contraction more than an equal 
perturbation of This figure illustrates how sensitivity analysis can be used in its own right, e.g. for 
trade-off studies and to gain insight into the flow system. 

The response sensitivities ap/3Dl are depicted in Figure 4.* As expected, significant sensitivity 
values exist only in the neighbourhood of (D, , while the sensitivities are very small or zero in all other 
regions. Similar observations can be made about other design parameters. 

To validate the direct differentiation sensitivity evaluations, we also compute sensitivities by the 
central finite difference method.28 It is emphasized that for each design parameter, two additional finite 
element meshes are generated and two additional b i t e  element analyses are performed to obtain the 
central finite difference sensitivities. When the number of design parameters is large, this finite 
difference method proves to be computationally prohibitive. Furthermore, round-off or truncation 
errors may adversely affect the results," which is particularly an issue here, as the PATRAN PCL 
programme which is used to generate the finite element mesh is single-precision. 

Design parameter 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

-2000 * 

- 14000 

-1600C ' 
Figure 3. Pressure drop sensitivities for initial contraction shape 

* Similar plots for au,/M?, , &,/a,, and BT/M?, appear in Reference 35. 
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308. 
278. 
249. 
219, 
189. 
159, 
129. 

Figure 4. Sensitivity ap/Xb,  

The direct differentiation and finite difference pressure drop sensitivities, i.e. aG/mi 
( i  = 1, . . . , 12), are compared in Table I. In all cases the discrepancy between the two results is 
small (less than 0+02%), thus verifying the accuracy of the efficiently computed direct differentiation 
sensitivities. 

5.2.2. Shape optimization. In this optimization we minimize the pressure drop (see equation (33)) 
subject to the side constraints that the design parameters (i.e. radii) do not exceed the inlet radius (see 
Table 11). 

The optimization requires 31 iterations (where sensitivities are performed) and 135 analyses (for the 
one-dimensional searches). The net pressure drop is reduced by 3.9% fiom 57,138 to 54,888. Most 
design parameter values attain their upper bounds in the optimal design. The initial and optimal 
contraction designs are denoted in Table I1 and illustrated in Figure 5. 

The pressure along the z-axis (r=O) for the initial and optimal designs appears in Figure 6 .  Since 
the inlet pressure is nearly uniform at the entrance, it is clear that the pressure in the optimal design is 
lower at the inlet end (z = 1) and higher at the end of the contraction (z = 5) than that of the initial 
design, thus yielding a lower pressure drop across the contraction. 

Table I. Design sensitivity aG/aOi for initial design using direct differentiation and finite difference methods 

Design parameter Direct differentiation Finite difference 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 

- 50.9974 
- 104.84 15 
- 201.91 89 
- 425.2562 
- 1195.4892 
-2104.2595 
- 2903.6879 
- 7595.8226 
- 10286.4281 
- 4070.3855 
-7949.7037 
- 14805.5955 

-51.0078 
- 104.8306 
- 201.88 17 
- 425.1 59 1 
- 1195.5578 
- 2 104.1294 
-2903.5867 

7596.2845 
- 10286.7772 
- 4070.6254 
-7948.3413 
- 14807.7171 

Discrepancy (%) 

-2.03 x lo-’ 
1.04 x lo-’ 
1.84 x lo-’ 
2.28 x lo-’ 

-5.74 
6.18 10-3 
3.48 x 1 0 - ~  

-6.08 x 1 0 - ~  
-3.39 x 
-5.89 x 1 0 - 3  

1.71 x lo-’ 
-1.43 x lo-’ 
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Table 11. Initial and optimal design parameter values. Active side constraints are marked with an asterisk 
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Design parameter Initial value Upper bound Lower bound Optimal value 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1-080 
0.960 
0.840 
0.720 
0.600 
0.480 
0.420 
0.360 
0.300 
0-285 
0.270 
0.255 

1 .zoo 
1.200 
1.200 
1.200 
1.200 
1.200 
1.200 
1-200 
1.200 
1.200 
1.200 
1.200 

04300 
0.800 
0.600 
0.600 
0.450 
0.300 
0.200 
0.200 
0.200 
0-150 
0.150 
0.150 

1.200iF 
1.2000* 
1.2000* 
1.2000* 
1.2000* 
1.2000* 
1.0808 
0.81 16 
0.49 18 
0.4 175 
0.34 10 
0.3019 

The pressure drop reduction is related to reducing the friction loss through the contraction, which 
comes from the shear stress acting tangent to the contraction wall. Figure 7 illustrates the tangent shear 
stress distributions for the initial and optimal designs. Upon comparing the two distributions, it is seen 
that the tangent shear stress in the optimal design is significantly less over most of the contraction; 
however, the tangent shear stress is higher in a small portion of the contraction. In the outlet 
extensions, the tangent shear stress distributions along the wall are almost identical for the two designs. 
Note that the tangent shear stress decreases slightly at the beginning of the contraction for both 
designs. These decreases are due to the velocity changes caused by the contraction. Durst and Loy 
observed a similar phenomena for a pipe with an abrupt c~nt rac t ion .~~ 

requires that the sensitivities aG/aOi vanish at the optimal design 
if the side constraint (i.e. the upper or lower bound) associated with design parameter Qi is not active. 
The sensitivities for the initial and optimal designs are denoted in Table 111. Using these sensitivities 
and the optimal parameter values listed in Table 11, we note that the sensitivitii; associated with the 
non-active side constraints conform to the Kuhr-Tucker conditions to within a tolerance of 0.15% of 
the initial sensitivity value. 

The Kuht-Tucker 

Figure 5. Initial and optimal contraction shapes 
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Belionin; of cwlnclion Belionin; of cwlnclion 

Figure 6. Pressure along z-axis for initial and optimal designs 

6 .  EXAMPLE: TURBULENT FLOW IN AN AXISYMMETRIC CONTRACTION 

In the previous section the cross-section of an axisymmetric contraction is optimized for a low- 
Reynolds-number laminar flow. The problem is now repeated with a high-Reynolds-number turbulent 
flow. Consequently, this analysis uses the mixing length turbulence model and the time-averaged 
momentum and mass conservation equations. All material properties are constant and temperature- 
independent. 
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E 
t 

0 1 2 4 i i 7 i 

Z-coordlutr 

Figure 7. Tangent shear stress along contraction wall for initial and optima1 designs 

6.1. Problem statement 

The axisymmetric contraction shape illustrated in Figure 1 is optimized. However, in this example 
the dimensions are chosen so that r , /L l  = 0 5 ,  rJL, = 0 * 2, L,/L, = 3 - 5 and L,/L, = 1 - 5 and 
the boundary condition of the first equation of (32) is replaced with a constant axial velocity profile 
boundary condition u, = 1, except at r = ri where u, = 0. The longer inlet region is chosen so that the 
incoming flow may become hlly developed and hence the mixing length model can be used to 
simulate the response. 

Table 111. Sensitivities for initial and optimal designs and their ratio. An asterisk 
denotes optimal sensitivities with respect to active side constraints 

Optimal sens. 
Design Sensitivity Sensi tivity 

parameter (initial design) (optimal design) Initial sens. 

1 -51.00 
2 - 104.8 
3 -201.9 
4 - 425.2 
5 - 1195 
6 -2104 
7 - 2904 
8 - 7596 
9 - 10286 

10 - 4070 
1 1  - 7950 
12 - 14806 

- 37.36* 
- 38.92* 
- 37-94* 
- 34.92* 
- 24.09* 
-3.704* 
- 0.798 

0.3441 
- 2.071 
-0.218 
12.04 
- 6.67 1 

0.73* 
0.37* 
0.19* 

8.21 x lo-’* 
2.02 x lo-** 
1.76 x 
2.75 x 1 0 - ~  
4.53 x 1 0 - ~  
2.01 1 0 - ~  
5.36 x 1 0 ~  

4-51 x I O - ~  
1.51 x lop3 
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Figure 8. Initial and optimal c o n a t i o n  shapes 

The Reynolds number Re = pi i l /p  is chosen as 2 x lo4. This value is low enough so that the 
numerical instabilities common to flow problems which require upwinding stabilization techniques do 
not appear in the present calculations. For this example the turbulent viscosity & is signficantly greater 
than molecular viscosity This mesh uses 2814 isoparametric quadrilateral elements which employ 
bilinear velocity and constant pressure interpolation. We use nine design parameters to parametrize the 
shape of the contraction, as illustrated in Figure 8. 

6.2. Contraction optimization 

Before commencing the optimization, the pressure drop sensitivities aG/N,  ( i  = 1, . . . ,9) are 
calculated for the initial design by both the direct differentiation and finite difference methods. 
Comparisons between these two  computation^^^ confirm that the efficiently computer direct 
differentiation sensitivities are correct. 

The design optimization converges in 15 iterations. The initial and optimal contraction shapes 
appear in Figure 8 and the initial, optimal, upper-bound and lower-bound values for the design 
parameters are denoted in Table N The optimization requires 15 sensitivity analyses and 63 analyses 
(for the onedimensional searches). 

Table IV. Initial and optimal design parameter values for turbulent flow optimization. Active side constraints are 
marked with an asterisk 

Design parameter Initial value Upper bound Lower bound Optimal value 

0-457 1 
0.4143 
0,3714 
0.3286 
0.2857 
0-2429 
0.22 14 
0.2107 
0.2054 

0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 

0.355 
0.205 
0.203 
0.203 
0.203 
0.203 
0.203 
0.200 
0.200 

0.5000* 
0-5000* 
0.5000* 
0.4999 
0.4394 
0.33 17 
0.269 1 
0.2357 
0.2 I97 
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0 t i  
m R A T l O N  MRRU 

Figure 9. Cost function history for turbulent flow optimization 

Comparing this optimal contraction shape with that in the previous example, we see that this optimal 
design has a more gradual taper. The cost function (i.e. the net pressure drop) history (see Figure 9) 
shows that the optimization converges rapidly over the first nine iterations; thereafter the cost function 
value changes only slightly. The optimal design yields a 4.5% net pressure drop reduction compared 
with the initial design. 

The design sensitivities aG/6Qi (i = 1, . . . ,9) for the initial and optimal designs are shown in Table 
V: The sensitivities related to the non-active side constraint design parameters are approximately zero 
for the optimal design, indicating that the Kuhn-Tucker conditions are satisfied. 

Table V: Sensitivities for initial and optimal designs and their ratio. An asterisk 
denotes optimal sensitivities with respect to active side constraints 

Optimal sens 
Design Sensitivity Sensitivity 

parameter (initial design) (optomal design) Initial sens. 

- 0.06601 
- 0.05796 
- 0.1181 
- 0,2549 
- 0,7317 
- 1.3802 
- 1.3488 
- 0.9184 
- 2.2082 

- 0.05306* 
- 0.02496* 
- 0.02514* 
-3.179 x loh4 
- 8.438 x 
- 1.204 x lo-' 

- 6.570 x lop3 
- 2.469 x 

1.928 lo-' 

8.04 x lo-'* 
4.31 x lo-'* 
2.13 x I&'* 

1.15 x lop3 
1.25 x lo-' 

8.72 x 1 0 - ~  
1.43 x lo-' 
7.15 x 
1.12 lo-' 
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‘ O h  lnitial data 

1 2 3 4 5 
2-Coordinate 

Figure 10. Pressure along z-axis for initial and optimal designs 

W d h *  

Figure 1 1. Tangent shear stress distribution for initial and optimal designs 
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Figure 12. Optimal contraction shapes for Re = 5 x lo3, 2 x lo4 and 2 x lo5 

The time-averaged pressure contours along the z-axis (r = 0) for the initial and optimal designs 
appear in Figure 10. It is clear from this figure that the pressure drop along the centreline in the optimal 
design is reduced across the contraction, Again the friction loss is related to the tangent shear stress 
acting along the contraction wall and again the reduction of the tangent shear stress due to the 
optimization is evident (see Figure 11). However, in turbulent flow the high-shear-stress region is 
confined to the boundary layer near the wall; this localization accounts for the differences between the 
laminar and turbulent optimal designs. 

Shape optimizations are also performed for Reynolds numbers Re = 5 x lo3 and 2 x lo5. The 
optimal designs for all three Reynolds numbers are illustrated in Figure 12. As seen from the figure, 
these three optimal shapes are almost identical. This shows that for this contraction and turbulence 
model, the optimal design is relatively insensitive to the Reynolds number and further confirms the 
notion that the high shear stress is confined to the boundary layer. 

7. DISCUSSION AND CONCLUSIONS 

A systematic design approach is presented for transient non-linear coupled flow and turbulent flow 
systems. The design sensitivities of a generalized response functional are computed via the direct 
differentiation method with respect to shape, material property and load data parameters. The 
efficiently computed sensitivities are combined with numerical optimization to form a computer-aided 
optimal design environment. Finally, this optimization algorithm is used to minimize the pressure drop 
for both laminar and turbulent flows through contractions. 

We note that the sensitivity terms such as aR/M, in equation (9) may be tedious to encode. 
Therefore it may be expedient to utilize automatic d~fferentiation~’ to hasten the software development. 
However, we do not recornend a black box approach to automatic differentiation sensitivity analysis, 
as this approach does not utilize the decomposed tangent operator and therefore the final code is not 
nearly as computationally efficient as the direct differentiation method. In fact, Bischof et give 
examples where the black box automatic differentiation sensitivity calculations actually require more 
computational time than the non-linear primal analysis. 

It is well known that the wall shear stress for laminar flow increases as the pipe diameter decreases. 
Hence the laminar flow optimization generated a design in which the cross-sectional area remained 
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large over a majority of the contraction region. However, this laminar design should not be used for a 
turbulent flow, as recirculation would otherwise arise in the abruptly tapered region. Therefore the 
turbulent design exhibits a more gradual taper. This design minimizes the wall surface area, thereby 
reducing the net friction loss through the contraction. 

The sensitivity formulations are derived for the transient thermal-flow coupled systems. As fbrther 
applications, design optimizations may be performed for tranisent coupled problems. These 
optimizations can be performed for shape changes as well as material property, boundary condition, 
initial condition and load data variations. 
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APPENDIX I: SENSITIVITY ANALYSIS FOR A PENALTY METHOD 

The penalty method is frequently used to analyse the previous problem rather than the mixed formulation."6 
In the penalty method the pressure is eliminated and the momentum and energy conservation equations are 
expressed solely in terms of the velocity and temperature fields by introducing a penalty formulation for the 
mass conservation equation. The sensitivities for the velocity and temperature fields are then obtained 
directly. However, the pressure sensitivities require additional computations. 

In the penalty method an artificial compressibility is added as a penalty term on the right side of the 
mass conservation equation (third equation of (1 5)): 

where the penalty parameter E is sufficiently small to obtain accurate analysis results. The advantage of 
this method is that it reduces the number of equations in finite element applications. 

Equation (36) is transformed to the reference configuration and then substituted into equation (19) to 
yield 

div,(u) = -cp, (36) 

R ( i ,  ?) = 0 = lB U * ;(x aii + V x i - ' i  - b)Jdvx 

-div,(JJ-'i) - D(u, J )  
+ j B  (1 . 

+ IB [D(U, J) . 2,LD(6, J)ydv, 

J B  

g(?, J )  - kg@, J)Jdvx + IAq ?GPKdux 
+ IB 

The referential pressure @ is eliminated from the residual, so that all terms involving pressure are 
neglected in equation (24) and equations (42) and (55)  become 
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+ [D(U, J) . 2fiD(diiJ)ydvX J, 
+ JB 
+ JBC ) 
-JB 

T[;di.J-TVxng - D(%, J) * 4jiD(di, J)vdv, 

-div,(JJ-'dG) * D(ii, J) dux 

Tl[div,(JJ-ldi) - D(%, J) 

+ divx(JJ-'"6) D(dG, J)]dvx, 

a("q - J,[ - . * + Vx"iJ-'"G - " b 
U P  (" -A;1 ii 

+ D(U, J) * 2fiD("6, J) 

-- 
mS 

n; - n-1 A e 

( :) (Jgni) D(U, J) 
divx(JJ-' "6) - D U, __ + div, 

+ div, (5 J-I 5)  - D("ii, J) + div, (J" ";I) - D(%, J)]dvx 

- j B  ?[8(%, &) - 2pD(%, J) + D(%, J) * 2pD 

+ IB [g( T ,  G) - kg("?, J) + g(?, J) - kg 

In addition, the rightmost integrals in equations (42) and (55) are eliminated. 

(3 8) 

(39) 
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After the primal analysis and pseudoanalysis have been performed, the pressure may be recovered 

1 .  
from 

(40) p = ~ I J  = - - dlv,(JJ-'C) 
€ 

and its sensitivity ap/mi may be computed from an application of the product rule to equation (40): 

J - divX(JJp1i)- mi J2  . (41) "I 1 _-  1" (" aJ-' a' - -- dlv, -----I&+ J-i+ JJ-1- mi t mi mi 
The evaluation of G and its sensitivity remains unchanged; see equations (22) and (45>-(51). 

APPENDIX 11: DETAILED DERIVATIVES 

This appendix provides detailed expressions of the derivatives that appear in the tangent operator, the 
pseudoload vector and the response functional sensitivity. 

The following derivatives are used to evaluate the tangent operator in equation (22): 

+ [D(U, J )  2fiD(dii, J)]Jdvx 

+ JB 

I B  

T[&l&XTVxn; + D(dG, J) - 71 
- D(%, J) .4fiD(di, J)vdv, + PI * D(dk JYdv,, 

= [-@I - D(U, J )  + ?.@I - D(%, J)ydv,, 
B 

(43) 

(44) 
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The derivatives of the response function (see equation (22)), a G / m  and aG/i3(MU), which are 
required to evaluate the sensitivities (see equation (13)) in Section 3.2 are evaluated in partitioned 
form as 
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where, from equations (16) and (20) and letting A4 equal n, we have 

The derivatives as of yet undefined in equation (24) are as follows: 

___- pi) - 0, 
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- n-l A U % = I B  a("R) ['"( At + Vx%J-' % - ' b 

)] - n$I. D(U, J) + D(U, J) - 2bD(%, J) 

+ j B  [B(i, g) - 2bD(Yi, J) + D(ii, J) 

- jB  '$1. D(U, g ) J d v X  

n i  - n-l 
e + n i  . J-TVxnZ - +IB "( At 

W + [g(?, J) - k$?, J) + ?"'I - D(%, J)]-d# JB Ws 

D(%, J) * 2pD(%, J) 

V x n i )  Jdv, + IB ?"'I - D (., g) Jdv, 

- IB ?[i)(P, g) - 2pD(%, J) + D(%, J) - 2pD 

- kg(n?, J) + g ( F ,  J) * kg 

+ I B [ ~ I . D ~ , ~ ) J + ~ I . D ( ' i - i , J ) -  ms "I dv,, ( 5 5 )  
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The derivatives for the tangent operator of equation ( 3  1 )  are 

(D(U, J) * 2@ + &(in,, D)]D(dii, J)}Jdv, + i I  D(dh, J)dvx, ( 5 8 )  
+ s, 

The derivative expressions in 
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(see equation (24)) for the turbulent flow residual equation (28) are 

aR 
= IB ii - j(VxiiJ-’fi - 6) 

aJ 
- i I  * D(U, J) + D(U, J) * 2[b + jit(im, D)]D(6, J)} -dux 

u - i P E d a ,  + IB U - j3(Vxi$ii)Jdvx 
- / A ,  ms 

- IB j I  * D(u, $)Jdvx 

+ IB  [B(.. $) -2[bbt(?m7 D ) ] D ( f i 9  J) 

+ D(U,  J) * 2 ab,d,,,, fi) D(6, J) 

+D(U, J) * 2[b+ bt(im, D)]D ( fi, - aJ)]Jdx 
mS 

+ Jb. [jI - D(b, z ) J  +pI - D(k J)- dv,, 
m, “I 

aR a6 - a i p  - = - IB  u - p-Jdv, - u.---Kdax, 
*Id *Id / A ,  

where 
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